A Weighted Spatially Constrained Finite Mixture Model for Image Segmentation
نویسندگان
چکیده
منابع مشابه
Spatially Constrained Mixture Model and Image Segmentation: A Review
The mixture model is a commonly used approach for image segmentation. However, it doesn’t consider the spatial information. In order to overcome this disadvantage, several spatially constrained mixture models have been proposed. In this paper, these spatially constrained mixture models and their experimental results on synthetic and real world images are presented. These experimental results de...
متن کاملA Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation
Accurate image segmentation is an important issue in image processing, where Gaussian mixture models play an important part and have been proven effective. However, most Gaussian mixture model (GMM) based methods suffer from one or more limitations, such as limited noise robustness, over-smoothness for segmentations, and lack of flexibility to fit data. In order to address these issues, in this...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملBayesian Estimation of Spatially Variant Finite Mixture Model for Brain Mr Image Segmentation
The Finite Mixture Model (FMM) based approaches have been applied in Magnetic Resonance Imaging (MRI) to extract information about human anatomy. The idea is to model feature vector of a tissue using some known distribution (such as Gaussian, known as GMM). The performance of FMM deteriorates with increase in noise within data which may occur due to environment, patient movement, technician exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, Materials & Continua
سال: 2021
ISSN: 1546-2226
DOI: 10.32604/cmc.2021.014141